Ma 3b Practical – Recitation 5

February 27, 2025

Recall Poisson distribution, Bayer's theorem, Normal distribution, and central limit theorem.

Exercise 1. (Poisson process) Suppose that an office receives telephone calls as a Poisson process with $\lambda = 0.5$ per min. What is the probability of exactly one call in first 5 mininutes?

Exercise 2. (Random variables) The Rayleigh distribution has CDF

$$F(x) = 1 - e^{-x^2/2}, x > 0$$

Compute the following

- 1. f(X)
- 2. E(X), Var(X)
- 3. P(X>2)

Intuition Let F be the CDF and f be the PDF of a continuous r.v. X. It's important that f(x) is not a probability; for example, we could have f(3) > 1, and we know P(X = 3) = 0. But thinking about the probability of X being very close to 3 gives us a way to interpret f(3). Specifically, the probability of X being in a tiny interval of length ϵ , centered at 3, will essentially be $f(3)\epsilon$. This is because

$$P(3 - \epsilon/2 < X < 3 + \epsilon/2) = \int_{3 - \epsilon/2}^{3 + \epsilon/2} f(x) dx \approx f(3)\epsilon,$$

This also implies that $P(X \leq 3) = P(X < 3)$.

Exercise 3. (normal distribution) We estimate that the distribution of a birthdate, in days from conception, has a normal distribution with mean 270 (in days) and a variance of 100. What is the probability that a child was born after the 300-th day or before the 240-th day after conception?

Exercise 4. (central limit theorem) We try to measure the intensity of a signal, but we can only make approximate measurements. These measurements are i.i.d. random variables X_i with mean μ (this is the true intensity, which is unknown) and variance 10. How many measurements must be taken to find the intensity with an error of at most 1 unit, and 95% certainty?

Exercise 5. (central limit theorem) Using the CLT and a continuity correction¹, estimate the probability that a Poisson r.v. with parameter $\lambda = 100$ is larger than 120.

Exercise 6. (central limit theorem) We roll 100 unbiased dice and we want to estimate the probability that the sum of the results is between 300 and 400 (both included).

¹ Let's forget about continuity correction if not covered yet. It's some minor improvement on estimation for discrete *i.i.d* random variables.

Solution. The number of calls in a 5 -min. interval follows a Poisson distribution with parameter $\omega = 5\lambda = 2.5$. Thus, the probability of no calls in a 5 -min. interval is $e^{-2.5} = .082$. The probability of exactly one call is $2.5e^{-2.5} = .205$.

Notes: Section 5.6 of Introduction to Probability-Joseph K. Blitzstein, Jessica Hwang. Recall that the Poisson distribution $Pois(\lambda)$ has pmf $P(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}$ where $\lambda = 2$.

A Poisson process is a sequence of arrivals occurring at different points on a timeline, such that the number of arrivals in a particular interval of time has a Poisson distribution. A process of arrivals in continuous time is called a Poisson process with rate λ if the following two conditions hold.

1. The number of arrivals that occur in an interval of length t is a Pois(λt) random variable, i.e. pmf $P_t(X = k) = \frac{(\lambda t)^k}{k!}e^{-\lambda t}$.

2. The numbers of arrivals that occur in disjoint intervals are independent of each other. For example, the numbers of arrivals in the intervals (0, 10), [10, 12), and [15, 1) are independent.

Exercise 7. (normal distribution) We estimate that the distribution of a birthdate, in days from conception, has a normal distribution with mean 270 (in days) and a variance of 100. What is the probability that a child was born after the 300-th day or before the 240-th day after conception?

Solution. Let X be the birthdate, in days from conception, then

$$X \sim \mathcal{N}(270, 100)$$

We compute

$$\begin{split} &= 1 - \mathsf{P}(240 \leqslant X \leqslant 300) \\ &= 1 - \mathsf{P}\left(\frac{240 - 270}{10} \leqslant \frac{X - 270}{10} \leqslant \frac{300 - 270}{10}\right) \\ &= 1 - \mathsf{P}(-3 \leqslant Z \leqslant 3) \quad \text{where } \mathsf{Z} \stackrel{\circ}{=} \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1) \\ &= 1 - [\mathsf{P}(\mathsf{Z} \leqslant 3) - \mathsf{P}(\mathsf{Z} \leqslant -3)] = 1 - \mathsf{P}(\mathsf{Z} \leqslant 3) + 1 - \mathsf{P}(\mathsf{Z} \leqslant 3) \\ &= 2 - 2\mathsf{F}_{\mathsf{Z}}(3) \\ &= 2 - 2(0.9987) \quad (\text{ see the } \mathcal{N}(0, 1) \text{ c.d.f. table }) \\ &= 0.0026. \end{split}$$

Exercise 8. (central limit theorem) We try to measure the intensity of a signal, but we can only make approximate measurements. These measurements are i.i.d. random variables X_i with mean μ (this is the true intensity, which is unknown) and variance 10. How many measurements must be taken to find the intensity with an error of at most 1 unit, and 95% certainty?

Solution. We want to choose n so that $P\left(\left|\bar{X}_n - \mu\right| \leq 1\right) = 0.95$. Equivalently, $P\left(\left|\frac{\bar{X}_n - \mu}{\sqrt{10/n}}\right| \leq \frac{1}{\sqrt{10/n}}\right) = 0.95$. According to the CLT, this is a normal distribution

$$P\left(\left|\frac{\bar{X}_n - \mu}{\sqrt{10/n}}\right| \leq a\right) = 0.95. \iff a = 1.96$$

So $\frac{1}{\sqrt{10/n}} = 1.96$ and $n = 10(1.96)^2 = 38.416$.

Solution. Let $X_i \stackrel{i.i.d.}{\sim}$ Pois(1), then we know that $X \stackrel{\circ}{=} \sum_{i=1}^{100} X_i \sim$ Pois(100). Note that $E[X_i] = 1$ and $Var(X_i) = 1$. Therefore, by the CLT (also applying a continuity correction), we have

$$P(X > 120) = P\left(\frac{X - 100 \cdot 1}{\sqrt{100 \cdot 1}} > \frac{120 - 100 \cdot 1}{\sqrt{100 \cdot 1}}\right)$$

$$\approx 1 - F_Z\left(\frac{120 + 1/2 - 100}{10}\right) \quad \text{where } Z \sim \mathcal{N}(0, 1)$$

$$= 1 - F_Z(2.05)$$

$$= 1 - 0.9798$$

$$= 0.0202$$

Solution. Let X_i , $i \in \{1, 2, ..., 100\}$, be i.i.d. r.v.s such that

$$P(X_i = k) = 1/6$$
 for all $k \in \{1, 2, ..., 6\}$.

We have

$$E[X_{i}] = \sum_{k=1}^{6} k \frac{1}{6} = \frac{6 \cdot 7}{2} \frac{1}{6} = 7/2 = 3.5$$

$$E[X_{i}^{2}] = \sum_{k=1}^{6} k^{2} \frac{1}{6} = \frac{6 \cdot 7 \cdot 13}{6} \frac{1}{6} = 91/6$$

$$Var(X_{i}) = E[X_{i}^{2}] - (E[X_{i}])^{2} = 91/6 - (7/2)^{2} = \frac{182 - 147}{12} = 2.91\overline{6}$$

Let $X \stackrel{\circ}{=} \sum_{\mathfrak{i}=1}^{100} X_{\mathfrak{i}}$, and note that

$$E[X] = 100 \cdot 3.5 = 350$$
, and $Var(X) = 100 \cdot 2.91\overline{6} = 291.\overline{6}$

By the CLT (also applying a continuity correction), we have

$$\begin{split} \mathsf{P}(\mathsf{X} \in [300, 400]) &= \mathsf{P}(|\mathsf{X} - 350| \leqslant 50) \\ &= \mathsf{P}\left(\left| \frac{\mathsf{X} - 350}{\sqrt{291.\overline{6}}} \right| \leqslant \frac{50}{\sqrt{291.\overline{6}}} \right) \\ &= 2\mathsf{F}_{\mathsf{Z}}\left(\frac{50 + 1/2}{\sqrt{291.\overline{6}}} \right) - 1 \\ &= 2\mathsf{F}_{\mathsf{Z}}(2.96) - 1 = 2 \cdot 0.9985 - 1 = 0.997 \end{split}$$

1 Remark on continuity correction(optional)

Since the cumulative distribution function of a binomial r.v. jumps at discrete values and the one for the normal is continuous, the approximation can be improved if we apply what is called a continuity correction. When we look at the probability that S_n is inside some interval of the form (c, d), [c, d], (c, d], [c, d],

- we add +1/2 to the LEFT endpoint if it is strict (it doesn't include the endpoint);
- we add -1/2 to the LEFT endpoint if it is not strict (it includes the endpoint);
- we add -1/2 to the RIGHT endpoint if it is strict (it doesn't include the endpoint);
- we add +1/2 to the RIGHT endpoint if it is not strict (it includes the endpoint);

2 Theorem (Central limit theorem (CLT))

2Let X_1, X_2, X_3, \ldots be a sequence of i.i.d. r.v.s with expectation μ and (finite) variance σ^2 , and let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then, we have the following convergence in law :

$$\lim_{n\to\infty} \mathsf{P}\left(\frac{\bar{X}_n-\mu}{\sqrt{\sigma^2/n}}\leqslant \mathfrak{a}\right) = \mathsf{F}_{\mathsf{Z}}(\mathfrak{a}) \stackrel{\circ}{=} \int_{-\infty}^{\mathfrak{a}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) dz, \quad \forall \mathfrak{a} \in \mathbb{R},$$

where $Z \sim \mathcal{N}(0, 1)$. We can also write:

$$\lim_{n\to\infty} P\left(\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n\sigma^2}} \leqslant a\right) = F_{Z}(a), \quad \forall a \in \mathbb{R}.$$